Contents:

- 1-Fluid friction apparatus
- 2-Orifice weir testing
- 3-Flow visualization open channel
- 4-Hydraulic bench
- **5-Friction pipe losses**
- **6-Orifice meter**
- 7-Venturi meter
- 8-Center of pressure
- 9-Renolds apparatus
- 10-Sedimentation transport channel fluid
- 11-Fluid properties

1-Fluid friction apparatus:

This apparatus is designed to allow detailed study of head losses which occur when an incompressible fluid flows through pipes, bends, valves and flow metering devices.

2-Orifice weir testing:

- a) To investigate the relation between the head over the crest of rectangular and V-notch with the volume flow rate (discharge) through the weir.
- b) Hence the measurement of the coefficient of discharge (cd) for a specific weir.

3-Flow visualization open channel:

Open channel flow is an important task of fluid mechanics for civil engineers. It describes the flow in rivers, man-made channels and =partially full pipes, as well as the behavior of hydraulics structures suchas weirs, spilway and sluices

4-Hydraulics bench:To measure the volume flow rate (discharge).

5-Friction pipe losses:

To investigate the variation of friction head along a circular pipe with average flow velocity In the pipe.

6-Orifice meter:

Measure the extent of the reduction in flow, contraction of the stream and energy loss, as the water discharges into the atmosphere from a sharp edged orifice in the base of a tank.

7-Venturi meter

- a) Direct measurement of the static pressure profile along venture tube
- b) Comparison of these results with theoretical predictions.

c) Measurement of the coefficient of discharge "cd" for the meter at various flow rates.

8- Center of pressure

Measurement of the center of pressure of general case of plane area at various angles and depths of immersion.

All results can be compared with theoretical predictions

9-Renolds apparatus

To compute renolds number (Re)for laminar, turbulent, transition flow

10- Sedimentation transport channel:

Starting conditions for bed-load transport

- *how flow velocity affects bed-loadtransport
- *ripple and due formation on the river bed
- * fluvial obstacle mark of bridge piers (scour formation and siltation)

11-fluid properties:

It provides an introduction to the fundamental properties of Newtonian liquids that affect their behavior in practical application.adminstration of the behavior of non-Newtonian liquidsis included in the project work exercise

