

5- Water and Hydraulic Structures Division

First Semester

	Subject		Hrs./week		Units
	Subject	Theo.	Tut.	Lab.	Units
B.E 3228	Soil Mechanics (1)	2	2	1	3
B.E 3234	Reinforced Concrete Design (1)	2	1		2
B.E 3231	Engineering Analysis	2	2		2
B.E 3233	Theory of Structures (1)	2	2		2
B.E 3235	Principles of Remote Sensing (1)	1	1	1	2
B.E 3239	Sanitary and Environmental Eng. (1)	1	1	1	2
B.E 3357	Hydraulic Structures (1)	2			2
B.E 3359	Engineering Hydrology (1)	2			2
B.E 3109	English A say Writing Language	1		1	2
B.E 3111	Leadership and Management Skills	1	1		1
	Total	16	10	4	20
	10(a)		30		20

Second Semester

	Subject Hrs./week			TI	
	Subject	Theo.	Tut.	Lab.	Units
B.E 3229	Soil Mechanics (2)	2	2	1	3
B.E 3232	Numerical Analysis	1	1	1	2
B.E 3236	Principles of Remote Sensing (2)	1	1	1	2
B.E 3237	Reinforced Concrete Design (2)	2	1		2
B.E 3238	Building Services (1)	2			2
B.E 3230	Highway Engineering (1)	2	1	2	3
B.E 3240	Sanitary and Environmental Eng. (2)	1	1	1	2
B.E 3358	Hydraulic Structures (2)	2			2
B.E 3360	Engineering Hydrology (2)	1	1		1
B.E 3361	Water Quality Control (1)	1	1		1
	Total	15	9	6	20
	10tai		30		20

	Theory: 2hrs/week	
B.E.: 3228 Soil Mechanics (1)	Tutorial: 2hrs. / week	
	Practical: 1 hr./week	
1- Geotechnical Properties		
Formation of soil, Grain size distribution, Clay	minerals	4
2- Soil classification		4
3- Weight-Volume relationship		8
4- Soil Compaction		4
5- Hydraulic Properties		
Field and Lab. Permeability		4
6- Steady state Flow:		
One and Two-dimensional flow, flow net, pipin	g and boiling.	16
7- Principle of effective stress		
Total stress, effective stress,		12
pore water pressure.		12
8- Stresses within a Soil Mass, geostatic stresses, S	Stresses due to external loads.	8
	total	60
Lab. 1 hr./week		
1.Water content		1
2. Atterberg limits		2
3. Specific gravity		2
4. Sieve analysis		1
5. Hydrometer analysis		3
6. Compaction test		2
7. Field density test		2
8.Permeability test		2
total		15

B.E 3238	Building Services (2 Hrs. / week)	Hrs.
Introduction		2
Type of pipes	and Fitting used in water system	
1. Type o	f pipes.	
2. Type o	f Valves.	
3. Pipe su	ipports.	2
Design and Ar	alysis of Cold Water System.	6
Design and Ar	alysis of Hot Water System.	4
Calculation of	Hot water storage Capacity and Heater Power.	
		4
Design of San	itary System.	6
Design of Stor	m Water Drainage System.	2
Design of Fire	Protection System.	4
	Total	30

B.E. 3231: Engineering Analysis	Theory: 2hrs./ Week Tutorial: 1hr./ Week	
1- Ordinary differential equations-:1-1 Applications of first order differential equations.		10
1-1-1 Salt concentration in tanks.		12
1-1-2 Discharge through orifices.		

Ministry of Higher Education and Scientific Research University of Technology Building and Construction Engineering Department Undergraduate Study Syllabus 2016/2017 Third Year	
1-2 Applications of second and higher order differential equations.	
1-2-1 Mechanical vibration.	
1-2-2 Elastic stability.	
1-2-3 Newton's 2 nd law of motion.	
2- Simultaneous linear differential equations.	
2-1 Cramer's rule.	
2-2 Applications.	12
2-2-1 Salt concentration in tanks.	12
2-2-2 Mechanical vibration- stiffness formulation.	
2-2-3 Frequency of structures by the energy conservation law.	
3- Second & higher order linear differential equations with no constant coefficients.	
3-1 Euler method.	12
3-2 Power series (Frobenius method).	
4- Fourier series:	
4-1 Periodic functions & Fourier coefficients.	12
4-2 Even & odd functions.	12
4-3 Half range expansion.	
5- Partial differential equations:	
5-1 Separation of variables method.	12
5-2 Applications.	14

B.E. 3109: English Essay Writing Language	Theory: 2 hrs./ Week
Unit One: Introduction to Scientific Statements 1.1 Be and have in scientific statements 1.2 Statements requiring the present simple	6
Unit Two: Dimensions and Properties 2.1 Dimensions 2.2 Properties 2.3 Negative form of the simple present statement 2.4 'Fronted' statements (structure 3)	6
Unit Three: Comparatives Data 3.1 Simple statements of comparison	6

3.2 The superlative degree	
Unit Four: Impersonal Scientific Statements-The Passive	
4.1 Use of the passive	
4.2 Form of the passive	4
4.3 Spelling rules	4
4.4 Suffixes	
Unit Five: Experimental Descriptions	
	4
Unit six: Describe Charts and Graphs	
6.1 The criteria of the academic writing	
6.2 Describing Figures (Bar Charts)	4
6.3 Describing the graphs	

B.E. 3111 : Leadership & Management Skills	2 Hrs./Week
Management framework	4
Management the Life Cycle	3
Basic Planning Principles	4
Risk Management	3
Ethics and Transparency in Public Organization	3
Motivating of Team	3
Assuring Project Quality	4
Data Collection and Analysis	3
Project Control Frame Work	3
TOTAL	30

B.E.3235 : Principle of Remote sensing (1)Theory: 1hr/ Week Tutorial: 1hr./ Week Lab :1hr/ Week	
1. Basic concepts, Definitions, importance and advantages, Comparison to maps, GIS, aerial photography and sonar.	2
2. Components, Data representation, Applications (Agriculture and forestry, geology, hydrology, land-use and land-cover, mapping, meteorology, environment)	2
 Electromagnetic (EM) radiation, EM energy, Interaction mechanisms (Reflectance, Emissivity), Laws regarding amount of energy radiated from an object, Parts of EM spectrum. 	2
4. EM Spectrum, Wavelength bands, atmosphere effects and interaction between E.M rays and atmosphere, scattering, absorption, reflectance spectra	2
5. Sensors, History, Satellite characteristics, Orbits and swath width, Scanner sensor systems.	2
6. Spatial, spectral, radiometric and temporal resolutions, overview of different sensors, satellite and airborne comparison	2
7. Properties of aerial photography, components of aerial cameras, Image motion, classification of aerial photos, orientation of camera axis, angular coverage, emulsion type.	2
8. Geometric properties of aerial photo, definitions, image and object space, photo scale, and relief displacement.	2
9. Relationship between coordinates of image and objects points, ground coordinates from vertical photo, photo overlap	2
10. Applications and examples of aerial photo, distance between flight lines, No. of images, area of image and one model. applications & examples for flight lines design	2
11. Digital Image processing: Image enhancement: Image reduction and magnification, contrast enhancement.	2
12. Band ratio, spatial filtering, digital image classification	2
13. Images corrections: Radiometric and geometric corrections, images rectification.	3
14. Ground control points, No. of GCCs, root mean square error RMSE, resampling methods.	3
Total	30
Lab. 1hrs/week	
1. Photogrammetry Exercise: scale, length and area. Air photo interpretation exercise (groups); Aerial photography for land cover mapping.	1
2. Photogrammetry Exercise: radial/relief displacement.	1
3. Photogrammetry Exercise: stereo pairs.	1
4. Measurement and Analysis of Reflectance. Reflectance Spectra	1
5. Identifying Digital image, Methods of image processing	1

6. Identifying ERDAS software	1
7. Viewer& Band combination. Image Export and Import	1
8. Subsets	1
9. Georeferencing using a georeferenced image Georeferencing using coordinates from a GPS unit.	1
10. Image Enhancement and filters	1
11. Image Merging (Pansharpening)	1
12. Mosaic Images	1
13. Unsupervised Classification and Supervised Classification	1
14. Classification Accuracy	2
Total	15

B.E. 3234 : Reinforced Concrete Design (1)Theory: 2hrs.Tutorial: 1hr.	
1. Introduction to reinforced concrete (concrete and steel)	6
2. Introduction methods of design and analysis for concrete structures and load stages for beam with equivalent cracks section for singly, doubly and T-sections	6
3. Analysis and design of singly reinforced concrete beams by ultimate strength design method	6
4. Analysis and design of doubly reinforced concrete beams by ultimate strength design method	6
5. Analysis and design of T and L reinforced concrete beams by ultimate strength design method	6
6. Design of continuous beams and one way slabs using coefficient methods	15
Total	45

B.E. 3239: Sanitary and Environmental engineering (1)	Theory: 1hr./ Week Tutorial: 1hr./ Week
---	--

	1
 Introduction to sanitary engineering sources of water 	2
1.2 Population estimation methods	2
1.3 fire demand calculation	
2. Water Quality Characteristics	4
3. Water Treatment Plant Unites	2
3.1 Intake	2
3.2 Screen	2
3.3 Sedimentation: coagulation and flocculation processes	4
3.4 Overflow rate and design	4
3.5 Filtration	4
3.6 Disinfection	2
3.7 Pumps types and applications	2
4. Network and water distribution	4
Lab.	1hr./ Week
1.Physical Properties	1
2.Determination of pH value	1
3.Conductivity	1
4.Turbidity	1
5.Jar Test ₁	2
6.Jar Test ₂	2
7.Setting Column	2
8.Free Chlorine & Combined Chlorine	2
9.Filtration Capacity	2
10.Oil & Grease	1

B.E. 3233: Theory of Structures (1) Theory: 2hrs./ Week Tutorial: 2hr./ Week	
 Determinate Structures Introduction + Stability and determinacy 	6
1.2 Influence Lines - Beams	4
1.3. Influence Lines - Girder	6
1.4. Influence Lines – Frame, Truss and Composite	4
2. Deformation of Structures2.1. Deflection and Rotation	16
3. Indeterminate Structures3.1. Introduction to indeterminate structures. Consistent deformation for the analysis of indeterminate frames and Trusses.	4
3.2. Symmetry and Anti-Symmetry	2

18

60

3.3. Slope deflection Method Total

B.E. 3359 Engineering Hydrology I	Theory: 2hrs./ Week	
1- Introduction: Hydrology and Hydrologic Cycle, Scope of Hydrology, Hydrological Data		2
2- Precipitation Types of Precipitation, Measurement of Precipitation, Estimation of Missing Data Areal Depth of Precipitation	and Adjustment of Records, Mean	4
3- Water Losses Interception loss, Evaporation, Methods of Estimating Lake Evaporation, Evapotranspiration, Infiltration Infiltration Indices	Evaporation Pans, Transpiration,	6
4- Surface Runoff Components of Stream Flow, Catchment Characteristics, Classification of Streams, Fa of Runoff.	ctors Affecting Runoff, Estimation	6
5- Stream Flow Hydrograph, Base flow Separation, Unit Hydrograph, Determine direct runoff hydrog rainfall, Changing the Duration of the Unit Hydrograph, S-Curve method, Synthetic H Snyder's Method, SCS Triangular Unit Hydrograph (Soil Conservation Service), Ratio	ydrograph (Ungauged Watersheds),	12

B.E. 3360 Engineering Hydrology II	Theory: 2hrs./ Week	
1- Flood Routing		12
Reservoir Routing, Hydrologic River Routing, Muskingum Method.		
2- Ground Water		8
Occurrence of Subsurface Water, Types of Geological Formations. Types of Aquifers, Aquifers Properties, Darcy's Law,		
Pumping Test Analysis,		
3- Reservoir Sedimentations		6
Sediment Movement and Depositions, Reduction of Reservoir Capacity, Reservoir Sec	limentation Control	
4- Statistical Hydrology		4
5- Stream Flow		12
Hydrograph, Base flow Separation, Unit Hydrograph, Determine direct runoff hydrog rainfall, Changing the Duration of the Unit Hydrograph, S-Curve method, Synthetic H Snyder's Method, SCS Triangular Unit Hydrograph (Soil Conservation Service), Ratio	ydrograph (Ungauged Watersheds),	

B.E. 3357 Hydraulic Structures I	Theory: 2hrs./ Week Tutorial: 1hr./ Week	
1- Introduction: Definitions, hydraulic structures, hydraulic systems, Irrigation structures, Drainage structures	actures	9
2- Hydraulics of closed conduit (water conveyance by pipes) Flow in pipes, energy losses in pipe flow, flow equations, design of pipes and pipe sys	tems for water conveyance.	9

3- Hydraulic of open channel (water conveyance by open channel) Open channel hydraulics, types of flows, equations of flow uniform flow, critical flow, specific energy, flow through transition sections.	9
4- Gradually varied flow: Profiles, computation methods	9
5- Rapidly varied flow: Hydraulic jump	9

B.E. 3358 Hydraulic Structures II Theory: 2hrs./ Week Tutorial: 1hr./ Week	
1- Measurements Structures: Sharp crested weirs, broad crested weirs, flumes (long throated and Parshall flumes)	5
2- Flow under gates: Sluice gates, Radial gates.	5
3- Hydraulics of spillways	5
4- Energy Dissipaters (USBR- Types stilling basin)	5
5- Hydraulics of overflow structures	5
6- Culverts Hydraulics	5
7-Transitions structures of open channels	5
8- Seepage Under floor of structures8-Creep theories, Uplift pressure, Piping, Bligh method, Lane method, Khosla method	5
9- Protection methods at downstream ends of hydraulic structures	5

B.E. 3230 : Highway Engineering	Theory: 2hrs./ Week Tuto 1hr./ Week Lab. : 2 hr./Week	orial:
1- Transportation planning		3
2- Selection of route location of highways		3
3- Surveys and costs		6
4- Cross section characteristics highways		3

5- Design of horizontal alignment	6
6- Design of vertical alignment	6
7- Asphalt concrete mix design	6
8- Flexible pavement design	3
9- Rigid pavement design	3
10- Traffic engineering	3
11- Pavement drainage	3
Lab. : 2hr./Week	
1- Penetration test	2
2- Ductility test	4
3- Softening point test	4
4- Flash point test	4
5- Viscosity test	4
6- Loss on heating test	4
7- C.B.R. test	4
8- Marshall test	4

B.E. 3232: Numerical AnalysisTheory: 1hr./ Week Tutorial: 1hr./ Week Lab. : 1hr./Week	
6- Matrices:	
6-1 Review.	
6-2 Solution of linear ordinary differential equations.	
6-2-1 Row of transformation (matrix inversion).	
6-2-2 Gauss elimination.	4
6-2-3 Gauss-Jordan method.	
6-2-4 Gauss-Seidel method.	
6-2-5 L-U method.	
6-2-6 Eigen values & Eigen vectors.	
1- Introduction to numerical methods:	
7-1 Difference table.	4
7-2 Differences & divided differences.	
2- Linear interpolation:	
8-1 Newton-Gregory interpolation polynomial.	4
8-2 Newton-Divided difference formula.	4
8-3 Lagrange interpolating polynomial.	
3- Numerical integration:	
9-1 Trapezoidal and Simpson's rules.	4
9-2 Gaussian quadrature.	
4- Solution of non-linear equations:	
10-1 Newton-Raphson method.	4
10-2 Indeterminate coefficients.	4
10-3 Indeterminate weights.	
5- Numerical solution of ordinary differential equations (initial value problems):	4
11-1 Taylor series.	4

11-2 Euler method.	
11-3 Modified Euler method.	
11-4 Runge-Kutta 4 th order method.	
6- Finite difference methods for boundary-value problems.	6
Lab. : 1hr./Week	
1- Interpolation	2
2- Integration	2
3- Solution of non-linear equations	2
4-Systems of simultaneous Equations	2
5- Numerical solution of ordinary differential equations (initial value problems)	2
6- Finite difference method.	3
7- Examination.	2

B.E.3236 : Principle of Remote sensing (2)	Theory: 1hr/Week Tutorial: 1hr./Week Lab:1hr/Week	
1. Elements of Geographical Information Systems (GIS): Geographical data.		2
2. GIS components and structure, spatial data models vector format, raster or grid model		2
3. Thermal Infrared Images, principles, kinetic heat, radiant flux and temperature, thermal radiation law, diurnal temperature cycle, emissivity, thermal sensing system		2
4. Factors effecting separation of target from background, advantages and disadvantages of thermal Imaging system, factors affecting thermal imagery, thermal sensing systems [detection/recognition and range of a FLIR Sensor]		2
5. Active remote sensing (Radar images), microwave, terrestrial surface object parameters (roughness, electrical properties).		2
6. Radar system parameters (signal wavelength and polarization, inclination angle, spatial resolution), advantages of radar data, radar sensor types.		2
7. Mathematical applications and examples on thermal and radar imaging.		2
8. Active remote sensing (Radar images), Laser scanning, basic principles, Laser- Radar performance (Laser- Radar equation, receivers).		2
9. Basic principles of laser ranging, profiling and scanning, flight planning		2
10. Examples and Applications		2
11. Principle of digital terrain modeling		2
12. Digital terrain surface modeling Interpolation Techniques for terrain surface modeling		2
13. GPS: principles and basics. Types of systems, m observables.	neasurements steps, GPS	3
14. GPS positioning modes, GPS methods GPS applications	and accuracy.	3
Total		30
Lab. 1hrs/week		
1. Map (Categories, types, scale, symbol, Map projection (and coordinates systems.	UTM), shape of the earth	1

2. GIS: definition, Components, uses of GIS, GIS data model and Functions.	1
3. Fundamentals of Arc Map, General view on Arc Map, Arc Toolbox, Catalog, Arc GIS, and Management of contents table (TOC).	1
4. Built the personal Geodatabase, Create shape file, Open existing shape file.	1
5. Drawing, snap and editing feature.	1
6. Symbolizing, Topology and Editing	1
7. Geometric correction	1
8. Create point's layer from coordinates (X, Y, Z).	1
9. Arc toolbox (buffer, clip, intersect)	1
10. Labels, Graphs and reports	1
11. Start project with Arc Map, Map production (Layout)	1
12. Introduction to GPS Geo-Xt Trimble.	1
13. GPS Applications (1)	1
14. GPS Applications (2)	2
Total	15
	•

B.E. 3237 : Reinforced Concrete Design (2) Theory: 2hrs./ Week Tutorial: 1hr./ Week	
1. Serviceability of beams (singly, doubly, T beams and continuous beams) and one way slabs	
2. Shear and diagonal tension design for beams	
3. Torsion design of beams	
4. Design of two way slabs by using coefficient method 2 or 3	
5. Introduction to concentrically loaded columns.	
Total	45

B.E. 3240: Sanitary and Environmental engineering (2)	Theory: 1hr./ Week Tutorial: 1hr./ Week
1. Sewer materials	2
2. Characteristics of wastewater2.1 Physical, chemical and microbiological Characteristics	4
2.2 Sewage disposal	4
3. Wastewater Treatment Plant Unites	2
3.1 Preliminary treatment systems	2
3.2 Primary treatment	4
3.3 Biological treatment	4
3.4 Secondary Treatment Systems	4
4. Sludge Treatment and Disposal	2

5. Miscellaneous Wastewater Treatment Techniques	2
Lab.	1hr./ Week
1.Salinity	1
2.Solid Measurement:	1
a-Total solids	1
b-Total Dissolved solids	1
c-Total suspended solids	1
3.Alkalinity	1
4.Total Hardness	1
5.Calcium Hardness	1
6.Chlorides	1
7.Dissolved Oxygen	2
8.Biochemical Oxygen Demand (BOD)	1
9.Chemical Oxygen Demand (COD)	1
10.Iron	1
11.Lead	1
12.Cadmium	1

Theory	2hrs/week
B.E. 3229 : Soil Mechanics (2) Tutorial: 2	2hrs. / week
Practical	: 1 hr./week
1. Consolidation theory and settlement: Terzagi theory and assumptions, Consolidation test	
2. Consolidation analysis. Consolidation Settlement and Degree of Consolidation.	
3. Shear Strength of Soils : Mohr-Coulomb theory	
4. Laboratory test, direct shear, triaxial test and coefficient of pore water pressure.	
5. Slop Stability, stability calculation for granular and cohesive soils	8
 Total stress analysis for determination of Factor of safety , Taylor's Stability number 	
 7. Effective stress analysis for determination of factor of safety a- The conventional method. b- The Simplified method. c- The Rigorous method. 	4
Total	60

Lab. 1 hr./week	
1. Consolidation test	3
2. Unconfined compression test	3
3. Direct shear test	3
4. Triaxial compression test	3
5. California Bearing Ratio test	3
total	15

B.E. 3361 Water Quality ControlTheory:1hr./ WeekTutorial:1hr./ Week	
1- Introduction:	2
Demands, collection and storage.	
2- Water quality:	2
Classification, uses, characteristics of natural water.	
3- Water pollution:	4
Pollution types, dispersion of pollutants, type of pollutants.	
4- Control of water pollution:	8
Control of river pollution, Control of lake pollution, Control of ground water pollution.	
5- Control of the sediment transportation:	4
River sediments, reservoir sediments.	
6- Water salination:	5
Sources, measurements, use of salt water for agriculture, control of salination in surface	
and ground water.	
7- Methods for reusing of water:	5
Drainage water, treatment plants outlet.	

