

6- Geomatic Engineering Division

First Semester

Subject		H	Hrs./week		Units
	Subject	Theo.	Tut.	Lab.	Units
B.E 3228	Soil Mechanics (1)	2	2	1	3
B.E 3234	Reinforced Concrete Design (1)	2	1		2
B.E 3231	Engineering Analysis	2	2		2
B.E 3233	Theory of Structures (1)	2	2		2
B.E 3235	Principles of Remote Sensing (1)	1	1	1	2
B.E 3239	Sanitary and Environmental Eng. (1)	1	1	1	2
B.E 2370	Analytical Photogrammetry (1)	1	1	1	2
B.E 3372	Land Surveying (1)	1		1	2
B.E 3109	English A say Writing Language	1		1	2
B.E 3111	Leadership and Management Skills	1	1		1
	Total	14	14 11 6		
	10(4)		31		20

Second Semester

	Subject		Hrs./week		Units
	Subject	Theo.	Tut.	Lab.	Units
B.E 3229	Soil Mechanics (2)	2	2	1	3
B.E 3232	Numerical Analysis	1	1	1	2
B.E 3237	Reinforced Concrete Design (2)	2	1		2
B.E 3238	Building Services (1)	2			2
B.E 3236	Principles of Remote Sensing (2)	1	1	1	2
B.E 3230	Highway Engineering (1)	2	1	2	3
B.E 3240	Sanitary and Environmental Eng. (2)	1	1	1	2
B.E 3371	Analytical Photogrammetry (2)	1	1	1	2
B.E 3373	Land Surveying (2)	1		3	2
	Total		7	10	20
10tal 31		20			

	Theory: 2hrs/week	
B.E. : 3228 Soil Mechanics (1)	Tutorial: 2hrs. / week	
	Practical: 1 hr./week	
1- Geotechnical Properties		
Formation of soil, Grain size distribution,	Clay minerals	4
2- Soil classification		4
3- Weight-Volume relationship		8
4- Soil Compaction		4
5- Hydraulic Properties		
Field and Lab. Permeability		4
6- Steady state Flow:		
One and Two-dimensional flow, flow net, p	iping and boiling.	16
7 Principle of offective stress		
7- Principle of effective stress Total stress, effective stress,		
, , ,		12
pore water pressure.		
8- Stresses within a Soil Mass, geostatic stress	es, Stresses due to external loads.	8
	total	60
Lab. 1 hr./week		
1.Water content		1
2. Atterberg limits		2
3. Specific gravity		2
4. Sieve analysis		1
5. Hydrometer analysis		3
6. Compaction test		2
7. Field density test		2
8.Permeability test		2
total		15

B.E 3238	Building Services (2 Hrs. / week)	Hrs.
Introduction		2
Type of pipes	and Fitting used in water system	
1. Type o	f pipes.	
2. Type o	f Valves.	
3. Pipe su	ipports.	2
Design and Ar	nalysis of Cold Water System.	6
Design and Ar	nalysis of Hot Water System.	4
Calculation of	Hot water storage Capacity and Heater Power.	
		4
Design of San	itary System.	6
Design of Stor	m Water Drainage System.	2
Design of Fire	Protection System.	4
	Total	30

B.E. 3231: Engineering Analysis	Theory: 2hrs./ Week Tutorial: 1hr./ Week	
1- Ordinary differential equations-:1-1 Applications of first order differential equations.		10
1-1-1 Salt concentration in tanks.		12
1-1-2 Discharge through orifices.		

1-2 Applications of second and higher order differential equations. 1-2-1 Mechanical vibration. 1-2-1 Mechanical vibration. 1-2-2 Elastic stability. 1-2-2 Elastic stability. 1-2-3 Newton's 2 nd law of motion. 2- Simultaneous linear differential equations. 2-1 Cramer's rule. 2-2 Applications. 2-2 Applications. 2-2-2 Mechanical vibration in tanks. 12 2-2-3 Frequency of structures by the energy conservation law. 12 3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4-1 Periodic functions & Fourier coefficients. 12 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 5-1 Separation of variables method. 5-2 Applications. 12	Ministry of Higher Education and Scientific Research University of Technology Building and Construction Engineering Department Undergraduate Study Syllabus 2016/2017 Third Year	
1-2-2 Elastic stability. 1-2-3 Newton's 2 nd law of motion. 2- Simultaneous linear differential equations. 2-1 Cramer's rule. 2-2 Applications. 12 2-2-1 Salt concentration in tanks. 12 2-2-2 Mechanical vibration- stiffness formulation. 12 2-2-3 Frequency of structures by the energy conservation law. 12 3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 12 5-1 Separation of variables method. 12	1-2 Applications of second and higher order differential equations.	
1-2-3 Newton's 2 nd law of motion.2- Simultaneous linear differential equations. 2-1 Cramer's rule. 2-2 Applications. 2-2-1 Salt concentration in tanks. 2-2-2 Mechanical vibration- stiffness formulation. 2-2-3 Frequency of structures by the energy conservation law.123- Second & higher order linear differential equations with no constant coefficients. 3-1 Euler method. 3-2 Power series (Frobenius method).124- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-3 Half range expansion.125- Partial differential equations: 5-1 Separation of variables method.12	1-2-1 Mechanical vibration.	
2- Simultaneous linear differential equations. 12 2-1 Cramer's rule. 12 2-2 Applications. 12 2-2-1 Salt concentration in tanks. 12 2-2-2 Mechanical vibration- stiffness formulation. 12 2-2-3 Frequency of structures by the energy conservation law. 12 3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 5-1 Separation of variables method.	1-2-2 Elastic stability.	
2-1 Cramer's rule.122-2 Applications.122-2-1 Salt concentration in tanks.2-2-1 Salt concentration in tanks.2-2-2 Mechanical vibration- stiffness formulation.2-2-3 Frequency of structures by the energy conservation law.3- Second & higher order linear differential equations with no constant coefficients.123-1 Euler method.123-2 Power series (Frobenius method).124- Fourier series:124-1 Periodic functions & Fourier coefficients.124-2 Even & odd functions.124-3 Half range expansion.125- Partial differential equations: 5-1 Separation of variables method.12	1-2-3 Newton's 2 nd law of motion.	
2-2 Applications. 12 2-2-1 Salt concentration in tanks. 2-2-1 Salt concentration in tanks. 2-2-2 Mechanical vibration- stiffness formulation. 12 2-2-3 Frequency of structures by the energy conservation law. 12 3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 5-1 Separation of variables method.	2- Simultaneous linear differential equations.	
2-2-1 Salt concentration in tanks.122-2-2 Mechanical vibration- stiffness formulation.2-2-3 Frequency of structures by the energy conservation law.3- Second & higher order linear differential equations with no constant coefficients.123-1 Euler method.123-2 Power series (Frobenius method).124- Fourier series:4-1 Periodic functions & Fourier coefficients.4-2 Even & odd functions.124-3 Half range expansion.125- Partial differential equations:125-1 Separation of variables method.12	2-1 Cramer's rule.	
2-2-1 Salt concentration in tanks. 12 2-2-2 Mechanical vibration- stiffness formulation. 12 2-2-3 Frequency of structures by the energy conservation law. 12 3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 12 5-1 Separation of variables method. 12	2-2 Applications.	12
2-2-3 Frequency of structures by the energy conservation law.3- Second & higher order linear differential equations with no constant coefficients.3-1 Euler method.3-2 Power series (Frobenius method).4- Fourier series:4-1 Periodic functions & Fourier coefficients.4-2 Even & odd functions.4-3 Half range expansion.5- Partial differential equations:5-1 Separation of variables method.	2-2-1 Salt concentration in tanks.	12
3- Second & higher order linear differential equations with no constant coefficients. 12 3-1 Euler method. 12 3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 12 5-1 Separation of variables method. 12	2-2-2 Mechanical vibration- stiffness formulation.	
3-1 Euler method.123-2 Power series (Frobenius method).124- Fourier series:4-1 Periodic functions & Fourier coefficients.4-2 Even & odd functions.124-3 Half range expansion.125- Partial differential equations:5-1 Separation of variables method.1212		
3-2 Power series (Frobenius method). 12 4- Fourier series: 4-1 Periodic functions & Fourier coefficients. 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 5-1 Separation of variables method.		
4- Fourier series: 12 4-1 Periodic functions & Fourier coefficients. 12 4-2 Even & odd functions. 12 4-3 Half range expansion. 12 5- Partial differential equations: 12 5-1 Separation of variables method. 12	3-1 Euler method.	12
4-1 Periodic functions & Fourier coefficients.124-2 Even & odd functions.124-3 Half range expansion.5- Partial differential equations:5-1 Separation of variables method.12		
4-2 Even & odd functions.124-3 Half range expansion.5- Partial differential equations:5-1 Separation of variables method.12	4- Fourier series:	
4-2 Even & odd functions. 4-3 Half range expansion. 5- Partial differential equations: 5-1 Separation of variables method.	4-1 Periodic functions & Fourier coefficients.	12
5- Partial differential equations: 5-1 Separation of variables method.	4-2 Even & odd functions.	12
5-1 Separation of variables method.	4-3 Half range expansion.	
	5- Partial differential equations:	
5-2 Applications.	5-1 Separation of variables method.	12
	5-2 Applications.	12

B.E. 3109: English Essay Writing Language	Theory: 2 hrs./ Week
Unit One: Introduction to Scientific Statements 1.1 Be and have in scientific statements 1.2 Statements requiring the present simple	6
Unit Two: Dimensions and Properties 2.1 Dimensions 2.2 Properties 2.3 Negative form of the simple present statement 2.4 'Fronted' statements (structure 3)	6
Unit Three: Comparatives Data 3.1 Simple statements of comparison	6

3.2 The superlative degree	
Unit Four: Impersonal Scientific Statements-The Passive 4.1 Use of the passive	
4.2 Form of the passive	
4.3 Spelling rules	4
4.4 Suffixes	
Unit Five: Experimental Descriptions	
	4
Unit six: Describe Charts and Graphs	
6.1 The criteria of the academic writing	
6.2 Describing Figures (Bar Charts)	4
6.3 Describing the graphs	

B.E. 3111 : Leadership & Management Skills	2 Hrs./Week
Management framework	4
Management the Life Cycle	3
Basic Planning Principles	4
Risk Management	3
Ethics and Transparency in Public Organization	3
Motivating of Team	3
Assuring Project Quality	4
Data Collection and Analysis	3
Project Control Frame Work	3
TOTAL	30

B.E.3235 : Principle of Remote sensing (1)Theory: 1hr/ WeekLab :1hr/ Week	
1. Basic concepts, Definitions, importance and advantages, Comparison to maps, GIS, aerial photography and sonar.	2
2. Components, Data representation, Applications (Agriculture and forestry, geology, hydrology, land-use and land-cover, mapping, meteorology, environment)	2
3. Electromagnetic (EM) radiation, EM energy, Interaction mechanisms (Reflectance, Emissivity), Laws regarding amount of energy radiated from an object, Parts of EM spectrum.	2
4. EM Spectrum, Wavelength bands, atmosphere effects and interaction between E.M rays and atmosphere, scattering, absorption, reflectance spectra	2
5. Sensors, History, Satellite characteristics, Orbits and swath width, Scanner sensor systems.	2
6. Spatial, spectral, radiometric and temporal resolutions, overview of different sensors, satellite and airborne comparison	2
7. Properties of aerial photography, components of aerial cameras, Image motion, classification of aerial photos, orientation of camera axis, angular coverage, emulsion type.	2
8. Geometric properties of aerial photo, definitions, image and object space, photo scale, and relief displacement.	2
9. Relationship between coordinates of image and objects points, ground coordinates from vertical photo, photo overlap	2
10. Applications and examples of aerial photo, distance between flight lines, No. of images, area of image and one model. applications & examples for flight lines design	2
11. Digital Image processing: Image enhancement: Image reduction and magnification, contrast enhancement.	2
12. Band ratio, spatial filtering, digital image classification	2
13. Images corrections: Radiometric and geometric corrections, images rectification.	3
14. Ground control points, No. of GCCs, root mean square error RMSE, resampling methods.	3
Total	30
Lab. 1hrs/week	
1. Photogrammetry Exercise: scale, length and area. Air photo interpretation exercise (groups); Aerial photography for land cover mapping.	1
2. Photogrammetry Exercise: radial/relief displacement.	1
3. Photogrammetry Exercise: stereo pairs.	1
4. Measurement and Analysis of Reflectance. Reflectance Spectra	1
5. Identifying Digital image, Methods of image processing	1

6. Identifying ERDAS software	1
7. Viewer& Band combination. Image Export and Import	1
8. Subsets	1
9. Georeferencing using a georeferenced image Georeferencing using coordinates from a GPS unit.	1
10. Image Enhancement and filters	1
11. Image Merging (Pansharpening)	1
12. Mosaic Images	1
13. Unsupervised Classification and Supervised Classification	1
14. Classification Accuracy	2
Total	15

B.E. 3234 : Reinforced Concrete Design (1)Theory: 2hrs.Tutorial: 1hr.	
1. Introduction to reinforced concrete (concrete and steel)	6
2. Introduction methods of design and analysis for concrete structures and load stages for beam with equivalent cracks section for singly, doubly and T-sections	6
3. Analysis and design of singly reinforced concrete beams by ultimate strength design method	6
4. Analysis and design of doubly reinforced concrete beams by ultimate strength design method	6
5. Analysis and design of T and L reinforced concrete beams by ultimate strength design method	6
6. Design of continuous beams and one way slabs using coefficient methods	15
Total	45

B.E. 3239: Sanitary and Environmental engineering (1)	Theory: 1hr./ Week Tutorial: 1hr./ Week
---	--

 Introduction to sanitary engineering sources of water 	2
1.2 Population estimation methods	2
1.3 fire demand calculation	
2. Water Quality Characteristics	4
3. Water Treatment Plant Unites	2
3.1 Intake	2
3.2 Screen	2
3.3 Sedimentation: coagulation and flocculation processes	4
3.4 Overflow rate and design	4
3.5 Filtration	4
3.6 Disinfection	2
3.7 Pumps types and applications	2
4. Network and water distribution	4
Lab.	1hr./ Week
1.Physical Properties	1
2.Determination of pH value	1
3.Conductivity	1
4.Turbidity	1
5.Jar Test ₁	2
6.Jar Test ₂	2
7.Setting Column	2
8.Free Chlorine & Combined Chlorine	2
9.Filtration Capacity	2
10.Oil & Grease	1

B.E. 3233: Theory of Structures (1)Theory: 2hrs./ Week Tutorial: 2hr./ Week	
 Determinate Structures Introduction + Stability and determinacy 	6
1.2 Influence Lines - Beams	4
1.3. Influence Lines - Girder	6
1.4. Influence Lines – Frame, Truss and Composite	4
2. Deformation of Structures2.1. Deflection and Rotation	16
3. Indeterminate Structures3.1. Introduction to indeterminate structures. Consistent deformation for the analysis of indeterminate frames and Trusses.	4
3.2. Symmetry and Anti-Symmetry	2

18

60

3.3. Slope deflection Method
Total

	Theory: 2hrs./ Week Tutorial:
B.E. 3230 : Highway Engineering	1hr./ Week
	Lab. : 2 hr./Week
1- Transportation planning	3
2- Selection of route location of highways	3
3- Surveys and costs	6
4- Cross section characteristics highways	3
5- Design of horizontal alignment	6
6- Design of vertical alignment	6
7- Asphalt concrete mix design	6
8- Flexible pavement design	3
9- Rigid pavement design	3
10- Traffic engineering	3
11- Pavement drainage	3
Lab. : 2hr./Week	
1- Penetration test	2
2- Ductility test	4
3- Softening point test	4
4- Flash point test	4
5- Viscosity test	4
6- Loss on heating test	4
7- C.B.R. test	4
8- Marshall test	4

B.E. 3232: Numerical Analysis	Theory: 1hr./ Week Tutorial: 1hr./ Week Lab. : 1hr./Week	
6- Matrices:		
6-1 Review.		
6-2 Solution of linear ordinary differential equations.		
6-2-1 Row of transformation (matrix inversion).		
6-2-2 Gauss elimination.		4
6-2-3 Gauss-Jordan method.		
6-2-4 Gauss-Seidel method.		
6-2-5 L-U method.		
6-2-6 Eigen values & Eigen vectors.		
1- Introduction to numerical methods:		
7-1 Difference table.		4
7-2 Differences & divided differences.		
2- Linear interpolation:		4

Ministry of Higher Education and Scientific Research University of Technology Building and Construction Engineering Department Undergraduate Study Syllabus 2016/2017 Third Year	مر می المرد الم مرد المرد المرد مرد المرد
8-1 Newton-Gregory interpolation polynomial.	
8-2 Newton-Divided difference formula.	
8-3 Lagrange interpolating polynomial.	
3- Numerical integration:	
9-1 Trapezoidal and Simpson's rules.	4
9-2 Gaussian quadrature.	
4- Solution of non-linear equations:	
10-1 Newton-Raphson method.	4
10-2 Indeterminate coefficients.	+
10-3 Indeterminate weights.	
5- Numerical solution of ordinary differential equations (initial value problems):	
11-1 Taylor series.	
11-2 Euler method.	4
11-3 Modified Euler method.	
11-4 Runge-Kutta 4 th order method.	
6- Finite difference methods for boundary-value problems.	6
Lab. : 1hr./Week	
1- Interpolation	2
2- Integration	2
3- Solution of non-linear equations	2
4-Systems of simultaneous Equations	2
5- Numerical solution of ordinary differential equations (initial value problems)	2
6- Finite difference method.	3
7- Examination.	2

B.E.3236 : Principle of Remote sensing (2)Theory: 1hr/ WeekLab :1hr/ Week	
1. Elements of Geographical Information Systems (GIS): Introduction, format of the Geographical data.	2
2. GIS components and structure, spatial data models vector format, raster or grid model	2
3. Thermal Infrared Images, principles, kinetic heat, radiant flux and temperature, thermal radiation law, diurnal temperature cycle, emissivity, thermal sensing system	2
4. Factors effecting separation of target from background, advantages and disadvantages of thermal Imaging system, factors affecting thermal imagery, thermal sensing systems [detection/recognition and range of a FLIR Sensor]	2
5. Active remote sensing (Radar images), microwave, terrestrial surface object parameters (roughness, electrical properties).	2
6. Radar system parameters (signal wavelength and polarization, inclination angle, spatial resolution), advantages of radar data, radar sensor types.	2
7. Mathematical applications and examples on thermal and radar imaging.	2
8. Active remote sensing (Radar images), Laser scanning, basic principles, Laser- Radar performance (Laser- Radar equation, receivers).	
9. Basic principles of laser ranging, profiling and scanning, flight planning	2
10. Examples and Applications	2

Ministry of Higher Education and Scientific Research University of Technology Building and Construction Engineering Department Undergraduate Study Syllabus 2016/2017 Third Year	
11. Principle of digital terrain modeling	2
12. Digital terrain surface modeling	2
Interpolation Techniques for terrain surface modeling	Z
13. GPS: principles and basics. Types of systems, measurements steps, GPS observables.	3
14. GPS positioning modes, GPS methods GPS applications and accuracy.	3
Total	30
Lab. 1hrs/week	
1. Map (Categories, types, scale, symbol, Map projection (UTM), shape of the earth and coordinates systems.	1
2. GIS: definition, Components, uses of GIS, GIS data model and Functions.	1
3. Fundamentals of Arc Map, General view on Arc Map, Arc Toolbox, Catalog, Arc GIS, and Management of contents table (TOC).	1
4. Built the personal Geodatabase, Create shape file, Open existing shape file.	1
5. Drawing, snap and editing feature.	1
6. Symbolizing, Topology and Editing	1
7. Geometric correction	1
8. Create point's layer from coordinates (X, Y, Z).	1
9. Arc toolbox (buffer, clip, intersect)	1
10. Labels, Graphs and reports	1
11. Start project with Arc Map, Map production (Layout)	1
12. Introduction to GPS Geo-Xt Trimble.	1
13. GPS Applications (1)	1
14. GPS Applications (2)	2
Total	15

B.E. 3237 : Reinforced Concrete Design (2) Theory: 2hrs./ Week	
Tutorial: 1hr./ Week	
1. Serviceability of beams (singly, doubly, T beams and continuous beams) and one way	12
slabs	12
2. Shear and diagonal tension design for beams	6
3. Torsion design of beams	9
4. Design of two way slabs by using coefficient method 2 or 3	12
5. Introduction to concentrically loaded columns.	6
Total	45

B.E. 3240: Sanitary and Environmental engineering (2)	Theory: 1hr./ Week Tutorial: 1hr./ Week
1. Sewer materials	2

Г

2. Characteristics of wastewater2.1 Physical, chemical and microbiological Characteristics	4
2.2 Sewage disposal	4
3. Wastewater Treatment Plant Unites	2
3.1 Preliminary treatment systems	2
3.2 Primary treatment	4
3.3 Biological treatment	4
3.4 Secondary Treatment Systems	4
4. Sludge Treatment and Disposal	2
5. Miscellaneous Wastewater Treatment Techniques	2
Lab.	1hr./ Week
1.Salinity	1
2.Solid Measurement:	1
2.Solid Measurement: a-Total solids	1
2.Solid Measurement: a-Total solids b-Total Dissolved solids	1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids	1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity	1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness	1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness	1 1 1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides	1 1 1 1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides 7.Dissolved Oxygen	1 1 1 1 1 1 1 1 1 1 2
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides 7.Dissolved Oxygen 8.Biochemical Oxygen Demand (BOD)	1 1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides 7.Dissolved Oxygen 8.Biochemical Oxygen Demand (BOD) 9.Chemical Oxygen Demand (COD)	1 1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides 7.Dissolved Oxygen 8.Biochemical Oxygen Demand (BOD) 9.Chemical Oxygen Demand (COD) 10.Iron	1 1 1 1 1 1 1 1 1
2.Solid Measurement: a-Total solids b-Total Dissolved solids c-Total suspended solids 3.Alkalinity 4.Total Hardness 5.Calcium Hardness 6.Chlorides 7.Dissolved Oxygen 8.Biochemical Oxygen Demand (BOD) 9.Chemical Oxygen Demand (COD)	1 1 1 1 1 1 1 1 1

	Theory: 2hrs	s/week
B.E. 3229 : Soil Mechanics (2)	Tutorial: 2hrs.	/ week
	Practical: 1 hr.	./week
1. Consolidation theory and settlement: Terzagi theory and assumptions, Consolidation test		8
2. Consolidation analysis. Consolidation Settlement and	Degree of Consolidation.	16

3. Shear Strength of Soils : Mohr-Coulomb theory	8
4. Laboratory test, direct shear, triaxial test and coefficient of pore water pressure.	12
5. Slop Stability, stability calculation for granular and cohesive soils	8
 Total stress analysis for determination of Factor of safety , Taylor's Stability number 	4
 7. Effective stress analysis for determination of factor of safety a- The conventional method. b- The Simplified method. c- The Rigorous method. 	4
total	60
Lab. 1 hr./week	
1. Consolidation test	3
2. Unconfined compression test	3
3. Direct shear test	3
4. Triaxial compression test	3
5. California Bearing Ratio test	3
total	15

B.E.3373 Land Surveying (I)	Theory: 1hr./ Week Practice : 2hr./ Week
1- Introduction	1
2- Detail Surveying with Tape	2
3- Digital Level:	4
Reconnaissance	
• Two peg test.	
Reciprocal leveling	
Profile and Cross-Section Leveling:	
Formation and drawing of profiles	
Formation and drawing of cross-sections	
4- Digital Theodolite:	2
Reconnaissance	
• Topographic Surveying with Digital Theodolite and T	ape
• Detail and Topographic Surveying with Digital Theorem	dolite and EDM
Midterm Exam	1

 5- Total Stations: Detail and Topographic Surveying with Total Stations Traversing Trilatration Triangulation 	5
Final Exam	
Experiment	
1- detail surveying	1
2- Detail Surveying with Tape	1
3- Two peg test with Digital Level.	1
4- Reciprocal leveling with Digital Level	1
5- Profile Leveling	1
6- Cross-Section Leveling	1
7- Topographic surveying(The direct method) with Digital Level	1
8- Topographic surveying(The indirect method) with Digital Level	1
9- Topographic Surveying with Digital Theodolite and Tape	1
10- Detail and Topographic Surveying with Digital Theodolite and EDM	1
Midterm Exam	1
11- Detail and Topographic Surveying with Total Stations	1
12- Intersection (Total Stations)	1
13- Resections (Total Stations)	1
14- Traversing (Total Stations)	1
15- Trilatration (Total Stations)	1
16- Triangulation (Total Stations)	1
Final Exam	

B.E.3374 Land Surveying (II)	•	1hr./ Week : 2hr./ Week
1- Stakeout for building construction:		
Stakeout horizontal locations using tape		
• Stakeout using theodolite and tape		5
Stakeout using Total Station		
• Stakeout the elevations using Digital level		
2- Stakeout for roadwork:		
• Stakeout using theodolite and tape		
Stakeout using Total Station		4
• Stakeout the elevations using Digital level		

Midterm Exam	1
3- Setting out for Pipeline and Tunnel:	
Stakeout using theodolite and tape	5
Stakeout using Total Station	5
Stakeout the elevations using Digital level	
4- geodesy surveying	
	Final Exam

Experiment	
• Stakeout(for building construction) horizontal locations using tape	1
• Stakeout (for building construction) using theodolite and tape	1
• Stakeout (for building construction) using Total Station	1
• Stakeout (for building construction) the elevations using Digital level	1
• Stakeout (for roadworks) using theodolite and tape	1
Stakeout (for roadworks) using Total Station	1
• Stakeout (for roadworks) the elevations using Digital level	2
Midterm Exam	1
• Stakeout (for Pipeline and Tunnel) using theodolite and tape	2
Stakeout (for Pipeline and Tunnel) using Total Station	2
• Stakeout (for Pipeline and Tunnel) the elevations using Digital level	1
Final Exam	

B.E.3371 Analytical Photogrammetry (I)	Theory: 2hr./ Week Practical: 1hr./ Week	
1- Introduction:		2
Basic principles of photogrammetry		
2-Historical developments		2
3-Applications:		4
Aerial photogrammetry		
Terrestrial (close-range) photogrammetry		
4-Cameras:		4
Film-based Cameras:		
Working principles and procedures		
Digital cameras:		
Working principles and procedures		

6-Geometric properties of vertical photographs: Image and object space photographs, Relief displacement, stereoscope viewing, Parallax. 7- Image Refinements 8- Flight plane 9-Midterm Exam	4
7- Image Refinements 8- Flight plane 9-Midterm Exam	2
8- Flight plane 9-Midterm Exam	2
9-Midterm Exam	2
	-
	2
10-Elements of analytical photogrammetry:	2
concept of image and object space	
11- Coordinates systems in analytical photogrammetry:	2
Photographic coordinate system, model coordinate system, object space coordinate system,	
geocentric coordinate system, local coordinate system	
12- Transformation of coordinates:	6
Two-dimensional transformations:	
Two-dimensional conformal (similar) transformation, two-dimensional affine	
transformation	
General three-dimensional transformation	
Laboratory	/ Tests
1-Pocket Stereoscope	1
2-Elements of aerial photographs	1
3-The use of Mirror Stereoscope	2
4-Measuring of parallax	2
5-Midterm Exam	1
6-Stereo Analyst	2
7-Creating a Nonoriented DSM:	6
Open the Left Image, Adjust Display Resolution, Add a Second Image, Adjust and Rotate	
the Display, Position the 3D Cursor, Save the Stereo Model to an Image File, Adjusting X	
Parallax, Adjusting Y-Parallax, Cursor Height Adjustment.	

B.E.3372 Analytical Photogrammetry (II) Theory: 2hr./ Week Practical: 1hr./ Week	
1- Central projection theory	4
2- Relation between object and photo	4
3- Interior orientation parameters	4
4- Exterior orientation parameters	4
5- Collinearity condition	2
6- Midterm Exam	2
7- Coplanearity condition	2
8- Data processing:	6
- Image refinement,	
- Sequential (resection and intersection) procedures,	
- Simultaneous procedures,	
- Relative and absolute orientation procedures	
9- Self calibration	2
10- Laser Scanning	2

Laborator	y Tests
1-Creating a DSM from External Sources:	3
Open the Left Image, Add a Second Image, Open the Create Stereo Model Dialog.	
2-Checking the Accuracy of a DSM:	2
3-Measuring 3D Information	3
4-Midterm Exam	1
5-Collecting and Editing 3D Data	3
6-Texturizing 3D Models	3