

1- Building eng. And Project Management

First Semester

Subject -		Hrs./week		Unita	
		Theo.	Tut.	Lab.	Units
B.E 3228	Soil Mechanics (1)	2	2	1	3
B.E 3238	Building Services (1)	2			2
B.E 3231	Engineering Analysis	2	2		2
B.E 3233	Theory of Structures (1)	2	2		2
B.E 3235	Principles of Remote Sensing (1)	1	1	1	2
B.E 3239	Sanitary and Environmental Eng. (1)	1	1	1	2
B.E 3302	Civil Eng. System Analysis (1)	2			2
B.E 3234	Reinforced Concrete Design (1)	2	1		2
B.E 3109	English A say Writing Language	1		1	2
B.E 3111	Leadership and Management Skills	1	1		1
Total		16	10	4	20
			30-		20

Second Semester

Subject		Hrs./week		Unita	
		Theo.	Tut.	Lab.	Units
B.E 3229	Soil Mechanics (2)	2	2	1	3
B.E 3232	Numerical Analysis	1	1	1	2
B.E 3304	Quality Control of Building Materials	2			2
B.E 3236	Principles of Remote Sensing (2)	1	1	1	2
B.E 3237	Reinforced Concrete Design (2)	2	1		2
B.E 3230	Highway Engineering	2	1	2	3
B.E 3240	Sanitary and Environmental Eng. (2)	1	1	1	2
B.E 3303	Civil Eng. System Analysis (2)	2			2
B.E 3305	Quality Control of Concrete	1	1		1
B.E 3306	Sustainable Building Material	1	1		1
Total		15	9	6	20
	10181		30		20

	Theory: 2hrs/week	
B.E. : 3228 Soil Mechanics (1)	Tutorial: 2hrs. / week	
	Practical: 1 hr./week	
1- Geotechnical Properties		
Formation of soil, Grain size distribution, Clay mi	inerals	4
2- Soil classification		4
3- Weight-Volume relationship		8
4- Soil Compaction		4
5- Hydraulic Properties		
Field and Lab. Permeability		4
6- Steady state Flow:		
One and Two-dimensional flow, flow net, piping an	nd boiling.	16
7- Principle of effective stress		
Total stress, effective stress,		12
pore water pressure.		
8- Stresses within a Soil Mass, geostatic stresses, Stre	sses due to external loads.	8
	total	60
Lab. 1 hr./week		
1.Water content		1
2. Atterberg limits		2
3. Specific gravity		2
4. Sieve analysis		1
5. Hydrometer analysis		3
6. Compaction test		2
7. Field density test		2
8.Permeability test		2
total		15

B.E 3238	Building Services (2 Hrs. / week)	Hrs.
Introduction		2
Type of pipes	and Fitting used in water system	
1. Type of	of pipes.	
2. Type of	of Valves.	
3. Pipe s	apports.	2
Design and A	nalysis of Cold Water System.	6
Design and A	nalysis of Hot Water System.	4
Calculation of	Hot water storage Capacity and Heater Power.	
		4
Design of San	itary System.	6
Design of Sto	rm Water Drainage System.	2
Design of Fire	e Protection System.	4
	Total	30

B.E 3302 Civil Eng. System Analysis (1)	(2 Hrs/week)
Introduction civil engineering system	4
Mathematical model in linear programming	8
Graphical method in LP	4
Simplex method	4
Two phase method in LP	4
Dual problems	2
Assignment strategy	4
- Hungarian method	
total	30

B.E. 3231: Engineering Analysis	Theory: 2hrs./Week	
1. Ordinary differential equations:	Tutorial: Thr./ week	[
1- Ordinary differential equations		
1-1-1 Salt concentration in tanks		
1-1-2 Discharge through orifices		
1-2 Applications of second and higher order differential equa	ations.	12
1-2-1 Mechanical vibration.		
1-2-2 Elastic stability.		
1-2-3 Newton's 2 nd law of motion.		
2- Simultaneous linear differential equations.		
2-1 Cramer's rule.		
2-2 Applications.		12
2-2-1 Salt concentration in tanks.		12
2-2-2 Mechanical vibration- stiffness formulation.		
2-2-3 Frequency of structures by the energy conservation law.		
3- Second & higher order linear differential equations with no constant coefficients.		
3-1 Euler method.		
3-2 Power series (Frobenius method).		
4- Fourier series:		
4-1 Periodic functions & Fourier coefficients.		12
4-2 Even & odd functions.		
4-3 Half range expansion.		
5- Partial differential equations:		
5-1 Separation of variables method.		12
5-2 Applications.		

B.E. 3109: English Essay Writing Language	Theory: 2 hrs./ Week
Unit One: Introduction to Scientific Statements 1.1 Be and have in scientific statements 1.2 Statements requiring the present simple	6
Unit Two: Dimensions and Properties 2.1 Dimensions 2.2 Properties 2.3 Negative form of the simple present statement 2.4 'Fronted' statements (structure 3)	6
Unit Three: Comparatives Data 3.1 Simple statements of comparison 3.2 The superlative degree	б
Unit Four: Impersonal Scientific Statements-The Passive 4.1 Use of the passive 4.2 Form of the passive 4.3 Spelling rules 4.4 Suffixes	4
Unit Five: Experimental Descriptions	4
Unit six: Describe Charts and Graphs 6.1 The criteria of the academic writing 6.2 Describing Figures (Bar Charts) 6.3 Describing the graphs	4

B.E. 3111 : Leadership & Management Skills	2 Hrs./Week
Management framework	4
Management the Life Cycle	3
Basic Planning Principles	4
Risk Management	3
Ethics and Transparency in Public Organization	3
Motivating of Team	3
Assuring Project Quality	4
Data Collection and Analysis	3
Project Control Frame Work	3
TOTAL	30

	Theory: 1hr/Week		
B.E.3235 : Principle of Remote sensing (1)	Tutorial: 1hr./ Week		
	Lab :1hr/ Week		
1. Basic concepts, Definitions, importance and advantages,	Comparison to maps, GIS,	2	
aerial photography and sonar.		2	
2. Components, Data representation, Applications (Agricu	ture and forestry, geology,	2	
hydrology, land-use and land-cover, mapping, meteorolo	gy, environment)	-	
3. Electromagnetic (EM) radiation, EM energy, Interaction	mechanisms (Reflectance,	_	
Emissivity), Laws regarding amount of energy radiated f	rom an object, Parts of EM	2	
spectrum.	-		
4. EM Spectrum, Wavelength bands, atmosphere effects an	d interaction between E.M	2	
rays and atmosphere, scattering, absorption, reflectance s	pectra	-	
5. Sensors, History, Satellite characteristics, Orbits and sw	wath width, Scanner sensor	2	
systems.		-	
6. Spatial, spectral, radiometric and temporal resolutions, overview of different		2	
sensors, satellite and airborne comparison		-	
7. Properties of aerial photography, components of aerial cameras, Image motion,			
classification of aerial photos, orientation of camera axis, angular coverage,		2	
emulsion type.			
8. Geometric properties of aerial photo, definitions, imag	e and object space, photo	2	
scale, and relief displacement.			
9. Relationship between coordinates of image and objects	points, ground coordinates	2	
from vertical photo, photo overlap			
10. Applications and examples of aerial photo, distance be	etween flight lines, No. of	2	
images, area of image and one model. applications &	examples for flight lines	$\frac{2}{2}$	
design			
11. Digital Image processing: Image enhancement: Image re	duction and magnification,	2	
contrast enhancement.			
12. Band ratio, spatial filtering, digital image classification		2	
13. Images corrections: Radiometric and geometric correction	ns, images rectification.	3	
15. Images concernous. Radiometric and geometric concernos, images rectification.			

14. Ground control points, No. of GCCs, root mean square error RMSE, resampling methods.	3
Total	30
Lab. 1hrs/week	
1. Photogrammetry Exercise: scale, length and area. Air photo interpretation exercise (groups); Aerial photography for land cover mapping.	1
2. Photogrammetry Exercise: radial/relief displacement.	1
3. Photogrammetry Exercise: stereo pairs.	1
4. Measurement and Analysis of Reflectance. Reflectance Spectra	1
5. Identifying Digital image, Methods of image processing	1
6. Identifying ERDAS software	1
7. Viewer& Band combination. Image Export and Import	1
8. Subsets	1
9. Georeferencing using a georeferenced image Georeferencing using coordinates from a GPS unit.	1
10. Image Enhancement and filters	1
11. Image Merging (Pansharpening)	1
12. Mosaic Images	1
13. Unsupervised Classification and Supervised Classification	1
14. Classification Accuracy	2
Total	15

B.E. 3234 : Reinforced Concrete Design (1) Theory: 2hrs. Tutorial: 1hr.	/ Week / Week
1. Introduction to reinforced concrete (concrete and steel)	6
2. Introduction to methods of design and analysis for concrete structures and load stages for beam with equivalent cracks section for singly, doubly and T-sections	6
3. Analysis and design of singly reinforced concrete beams by ultimate strength design method	6
4. Analysis and design of doubly reinforced concrete beams by ultimate strength design method	6
 Analysis and design of T and L reinforced concrete beams by ultimate strength design method 	
6. Design of continuous beams and one way slabs using coefficient methods	15
Total	45

B.E. 3239: Sanitary and Environmental engineering (1)	Theory: 1hr./ Week Tutorial: 1hr./ Week
1. Introduction to sanitary engineering	
1.1 sources of water	2
1.2 Population estimation methods	_
1.3 fire demand calculation	
2. Water Quality Characteristics	4
3. Water Treatment Plant Unites	2
3.1 Intake	Z
3.2 Screen	2
3.3 Sedimentation: coagulation and flocculation processes	4
3.4 Overflow rate and design	4
3.5 Filtration	4
3.6 Disinfection	2
3.7 Pumps types and applications	2
4. Network and water distribution	4
Lab.	1hr./ Week
1.Physical Properties	1
2.Determination of pH value	1
3.Conductivity	1
4.Turbidity	1
5.Jar Test ₁	2
6.Jar Test ₂	2
7.Setting Column	2
8.Free Chlorine & Combined Chlorine	2
9.Filtration Capacity	2
10.0il & Grease	1

B.E. 3233: Theory of Structures (1) Theory: 2hrs./ Week Tutorial: 2hr./ Week	
 Determinate Structures 1.1 Introduction + Stability and determinacy 	6
1.2 Influence Lines - Beams	4
1.3. Influence Lines - Girder	6
1.4. Influence Lines – Frame, Truss and Composite	4
2. Deformation of Structures2.1. Deflection and Rotation	16
3. Indeterminate Structures3.1. Introduction to indeterminate structures. Consistent deformation for the analysis of indeterminate frames and Trusses.	4
3.2. Symmetry and Anti-Symmetry	2
3.3. Slope deflection Method	18
Total	60

B.E 3303 Civil Eng. System Analysis	(2 Hrs/week)
Transportation method	
- Least cost	0
- Vogel	0
- optimum solution	
Decision Making,	
 element of decision problem 	10
- decision model	10
- decision trees	
Fundamental of probability,	6
decision based on expected value	0
Simulation concepts	
 simulation model application in simulation 	2
problem	3
 monte-carlo simulation 	
Total	30

B.E 3304 : Quality Control of Building Materials	Theory: 2 hrs./ Weel	k
1. Introduction and definition of quality.	6	
2. Importance and types of quality control systems: control system	SO 9001 Quality 4	
3. Quality control techniques: introduction; the natu quality assurance; control charts.	e of variability; 4	
4. Calculation and drawing of Shewhart control cha	is. 4	
5. Calculation and drawing of Cusum control charts	4	
6. Sampling, inspection and testing of building mate	ials 4	
7. Iraqi codes and International Specifications and s	andards 4	

B.E 3305: Quality Control of Concrete	Theory: 2 hrs./	Week
1. Introduction to Quality Control requirements for	concrete.	6
2. Fresh concrete: QC requirements for placing and compaction; curing.		4
3. Quality Control requirements for concreting in co	old and hot weathers.	4
4. Quality Control requirements for transport of concrete; formwork.		4
5. Quality Control requirements for Handling Erection of precast concrete elements.		4
6. Quality Control requirements for cement, aggregation	ate and other materials.	4
7. Comparisons between Iraqi codes and internat applications	ional standards: Some	4

B.E 3306 Sustainable Building Materials Theory: 2 hrs./	Week
1. Introduction and definition of sustainability.	6
2. Carbon footprint, thermal transmission and thermal mass.	4
3. Longevity and service life.	4
4. Storm water management and sustainability.	4
5. Human factor and living/ working environments.	4
6. Safety and security. Economic impact.	4
7. Resilience with climate change. Applications.	4

	Theory: 2hrs./ Week Tutorial:
B.E. 3230 : Highway Engineering	1hr./ Week
	Lab. : 2 hr./Week
1- Transportation planning	3
2- Selection of route location of highways	3
3- Surveys and costs	6
4- Cross section characteristics highways	3
5- Design of horizontal alignment	6
6- Design of vertical alignment	6
7- Asphalt concrete mix design	6
8- Flexible pavement design	3
9- Rigid pavement design	3
10- Traffic engineering	3
11- Pavement drainage	3
Lab. : 2hr./Week	
1- Penetration test	2
2- Ductility test	4
3- Softening point test	4
4- Flash point test	4
5- Viscosity test	4
6- Loss on heating test	4
7- C.B.R. test	4
8- Marshall test	4

B.E. 3232: Numerical Analysis	Theory: 1hr./ Week Tutorial: 1hr./ Week Lab. : 1hr./Week	
6- Matrices:		
6-1 Review.		
6-2 Solution of linear ordinary differential equations.		
6-2-1 Row of transformation (matrix inversion).		
6-2-2 Gauss elimination.		4
6-2-3 Gauss-Jordan method.		
6-2-4 Gauss-Seidel method.		
6-2-5 L-U method.		
6-2-6 Eigen values & Eigen vectors.		
1- Introduction to numerical methods:		
7-1 Difference table.		4
7-2 Differences & divided differences.		
2- Linear interpolation:		
8-1 Newton-Gregory interpolation polynomial.		4
8-2 Newton-Divided difference formula.		4
8-3 Lagrange interpolating polynomial.		
3- Numerical integration:		4

Ministry of Higher Education and Scientific Research	
University of Technology	2
Building and Construction Engineering Department	
Undergraduate Study Syllabus 2016/2017	alized 21
Third Year	تاسمد سنة (
9-1 Trapezoidal and Simpson's rules.	
9-2 Gaussian quadrature.	
4- Solution of non-linear equations:	
10-1 Newton-Raphson method.	1
10-2 Indeterminate coefficients.	4
10-3 Indeterminate weights.	
5- Numerical solution of ordinary differential equations (initial value problems):	
11-1 Taylor series.	
11-2 Euler method.	4
11-3 Modified Euler method.	
11-4 Runge-Kutta 4 th order method.	
6- Finite difference methods for boundary-value problems.	6
Lab. : 1hr./Week	
1- Interpolation	2
2- Integration	2
3- Solution of non-linear equations	2
4-Systems of simultaneous Equations	2
5- Numerical solution of ordinary differential equations (initial value problems)	2
6- Finite difference method.	3
7- Examination.	2

	Theory: 1hr/ Week	
B.E.3236 : Principle of Remote sensing (2)	Tutorial: 1hr./ Week	
	Lab :1hr/ Week	
1. Elements of Geographical Information Systems (GIS): 1	Introduction, format of the	2
Geographical data.		Z
2. GIS components and structure, spatial data models ver	ctor format, raster or grid	r
model		Z
3. Thermal Infrared Images, principles, kinetic heat, radi	ant flux and temperature,	r
thermal radiation law, diurnal temperature cycle, emissivity	ty, thermal sensing system	Z
4. Factors effecting separation of target from back	ground, advantages and	
disadvantages of thermal Imaging system, factors at	ffecting thermal imagery,	2
thermal sensing systems [detection/recognition and range	of a FLIR Sensor]	
5. Active remote sensing (Radar images), microwave,	terrestrial surface object	2
parameters (roughness, electrical properties).		2
6. Radar system parameters (signal wavelength and polar	rization, inclination angle,	2
spatial resolution), advantages of radar data, radar sensor	types.	2
7. Mathematical applications and examples on thermal and a	adar imaging.	2
8. Active remote sensing (Radar images), Laser scanning	g, basic principles, Laser-	2
Radar performance (Laser- Radar equation, receivers).		2
9. Basic principles of laser ranging, profiling and scanning,	flight planning	2
10. Examples and Applications		2
11. Principle of digital terrain modeling		2
12. Digital terrain surface modeling		2
Interpolation Techniques for terrain surface modeling		2
13. GPS: principles and basics. Types of systems, m	neasurements steps, GPS	3

-

-

observables.

Γ

14. GPS positioning modes, GPS methods GPS applications and accuracy.	3
Total	30
Lab. 1hrs/week	
1. Map (Categories, types, scale, symbol, Map projection (UTM), shape of the earth and coordinates systems.	1
2. GIS: definition, Components, uses of GIS, GIS data model and Functions.	1
3. Fundamentals of Arc Map, General view on Arc Map, Arc Toolbox, Catalog, Arc GIS, and Management of contents table (TOC).	1
4. Built the personal Geodatabase, Create shape file, Open existing shape file.	1
5. Drawing, snap and editing feature.	1
6. Symbolizing, Topology and Editing	1
7. Geometric correction	1
8. Create point's layer from coordinates (X, Y, Z).	1
9. Arc toolbox (buffer, clip, intersect)	1
10. Labels, Graphs and reports	1
11. Start project with Arc Map, Map production (Layout)	1
12. Introduction to GPS Geo-Xt Trimble.	1
13. GPS Applications (1)	1
14. GPS Applications (2)	2
Total	15

B.E. 3237 : Reinforced Concrete Design (2) Theory: 2hrs./ Wee	k
Tutoriai: Inf./ week	
1. Deflection of beams (singly, doubly, T beams and continuous beams) and one	way 12
slabs	12
2. Shear and diagonal tension design for beams	6
3. Torsion design of beams	
4. Design of two way slabs by using coefficient method 2 or 3	
5. Introduction to concentrically loaded columns.	
Total	45

B.E. 3240: Sanitary and Environmental engineering (2)	Theory: 1hr./ Week Tutorial: 1hr./ Week
1. Sewer materials	2
2. Characteristics of wastewater2.1 Physical, chemical and microbiological Characteristics	4

2.2 Sewage disposal	4
3. Wastewater Treatment Plant Unites	2
3.1 Preliminary treatment systems	2
3.2 Primary treatment	4
3.3 Biological treatment	4
3.4 Secondary Treatment Systems	4
4. Sludge Treatment and Disposal	2
5. Miscellaneous Wastewater Treatment Techniques	2
Lab.	1hr./ Week
1.Salinity	1
2.Solid Measurement:	1
a-Total solids	1
b-Total Dissolved solids	1
c-Total suspended solids	1
3.Alkalinity	1
4.Total Hardness	1
5.Calcium Hardness	1
6.Chlorides	1
7.Dissolved Oxygen	2
8.Biochemical Oxygen Demand (BOD)	1
9.Chemical Oxygen Demand (COD)	1
10.Iron	1
11.Lead	1
12.Cadmium	1

	Theory: 2hrs/week
B.E. 3229 : Soil Mechanics (2)	Tutorial: 2hrs. / week
	Practical: 1 hr./week
 Consolidation theory and settlement: Terzagi theory and assumptions, Consolidation test 	
2. Consolidation analysis. Consolidation Settlement and Degree of Consolidation.	
3. Shear Strength of Soils : Mohr-Coulomb theory	
4. Laboratory test, direct shear, triaxial test and coefficient	ent of pore water pressure. 12

Ministry of Higher Education and Scientific Research University of Technology Building and Construction Engineering Department Undergraduate Study Syllabus 2016/2017 Third Year	
5. Slop Stability, stability calculation for granular and cohesive soils	8
6. Total stress analysis for determination of Factor of safety, Taylor's Stability number	4
7. Effective stress analysis for determination of factor of safety	
a- The conventional method.	4
b- The Simplified method.	4
c- The Rigorous method.	
Total	60
Lab. 1 hr./week	
1. Consolidation test	3
2. Unconfined compression test	3
3. Direct shear test	3
4. Triaxial compression test	3
5. California Bearing Ratio test	3
Total	15